CVU

INDUCTOSYN® ANALOG TO DIGITAL CONVERTER

TYPICAL OPERATION

<table>
<thead>
<tr>
<th>INDUCTOSYN®</th>
<th>CYCLE LENGTH</th>
<th>CYCLE DIVISION</th>
<th>MAXIMUM SPEED*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALE</td>
<td></td>
<td></td>
<td>TYPE H</td>
</tr>
<tr>
<td>2 mm</td>
<td>2000</td>
<td>2000</td>
<td>36 m/min</td>
</tr>
<tr>
<td>.2 in</td>
<td>2000</td>
<td>2000</td>
<td>3600 in/min</td>
</tr>
<tr>
<td>.1 in</td>
<td>1000</td>
<td>1000</td>
<td>3600 in/min</td>
</tr>
<tr>
<td>1 deg.</td>
<td>2000</td>
<td>(360 pole)</td>
<td>600 deg/sec</td>
</tr>
<tr>
<td>1 deg.</td>
<td>1000</td>
<td>(720 pole)</td>
<td>600 deg/sec</td>
</tr>
<tr>
<td>2 deg.</td>
<td>2000</td>
<td>(360 pole)</td>
<td>100 rpm</td>
</tr>
<tr>
<td>1 deg.</td>
<td>2000</td>
<td>(720 pole)</td>
<td>300 deg/sec</td>
</tr>
</tbody>
</table>

Maximum speed with accuracy of ±3 counts or better. Minimum speed is zero.

CVU PERFORMANCE DATA

Accuracy: 1:1000 T.I.R. (+0.000050" with 0.1" INDUCTOSYN® cycle)

Tracking: ±3 counts at maximum rate

Rate: 600,000 counts/sec max

Acceleration: 108 counts/sec ² max. (10,000 in/sec ² at .0001" resolution)

Ambient Temperature: 50° to 120°F (10° to 47.5°C), full operation

CVN

INDUCTOSYN® ANALOG TO DIGITAL CONVERTER

CVN SPECIFICATIONS

General design: Single axis modular, completely self-contained, with integral power supply.

Position transducers: Linear and rotary INDUCTOSYN scales and spar assemblies.

Digit capacity: Inches, XXX.XXX: Metric, XXX.XXX: Rotary, "XXX.XXX (From 000.000 to 359.999)

Resolution: Linear, .0001" and .001 mm; Rotary, .001°

Repeatability: Linear, ±.000020" ±.0005 mm; Rotary, ±.001°

Maximum speed: Linear, 2400 I.P.M. Rotary, 66.7 R.P.M.

Electrical input: 115/220 VAC ±20%, 60Hz or 50Hz

Dimensions & weight: 3 1/2" x 13 1/2" x 1 1/2" approx. 12 1/2 lbs.

Case: .000" aluminum, with wear- and corrosion-resistant epoxy coat.

Axis labeling: Snap-out plastic labels (C.X,Y,Z, etc.)

Cable length: Up to 200 feet between position transducer and console.

Option: .0005° resolution in rotary model. TTL-compatible BCD outputs, either parallel or serial.